If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2+18r+13=-2
We move all terms to the left:
4r^2+18r+13-(-2)=0
We add all the numbers together, and all the variables
4r^2+18r+15=0
a = 4; b = 18; c = +15;
Δ = b2-4ac
Δ = 182-4·4·15
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{21}}{2*4}=\frac{-18-2\sqrt{21}}{8} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{21}}{2*4}=\frac{-18+2\sqrt{21}}{8} $
| 20(-4x+10)=7(x-5) | | y+30=2(6y-7) | | y+30=2(6y-7 | | -8x-8(-3)=12 | | -2x=x^2+8 | | 20(-2x+17)=17(x-2) | | 7(s-3)+3(3s+6)=17 | | 0.25p-50=240 | | −27=2x−19 | | 20(-2x+25)=5(5x-5) | | 3x-4x+28=19 | | 10+2x=8x | | n/3-6=-12 | | 3a-15=4a+2 | | 4/5+c=1/8 | | X^4+4^3-16x+16=0 | | Q^2+6q-18=-5 | | 3a-15=4a+1 | | Q2+6q-18=-5 | | -8-4(2x-11)=28 | | 20(6x+19)=18(x-5) | | 20(-1x+8)=-5(x-4) | | 3x+2x+50=100 | | 12-2x=10-3x | | -2x=527 | | 20(11x+18)=31(x-2) | | -23=13x+2+22 | | -8y-(-8)=-2y-40 | | -3(m+4)=18* | | 4-18+4y=42 | | -g+5=10 | | 2n2-10n-5=-4n |